function CYK(words, grammar) returns best_parse

Create and clear \(p[num_words, num_words, num_nonterminals] \)

base case
for \(i = 1 \) to \(num_words \)
 for \(A = 1 \) to \(num_nonterminals \)
 if \(A \rightarrow w_i \) is in grammar then
 \(\pi[i, i, A] = P(A \rightarrow w_i) \)

recursive case
for \(j = 2 \) to \(num_words \)
 for \(i = 1 \) to \(num_words - j + 1 \)
 for \(k = 1 \) to \(j - 1 \)
 for \(A = 1 \) to \(num_nonterminals \)
 for \(B = 1 \) to \(num_nonterminals \)
 for \(C = 1 \) to \(num_nonterminals \)
 prob = \(\pi[i, k, B] \times p[i+k, j-k, C] \times P(A \rightarrow BC) \)
 if \(prob > \pi[i, j, A] \) then
 \(\pi[i, j, A] = prob \)
 \(B[i, j, A] = \{k, A, B\} \)